

GCE AS/A level

0975/01

MATHEMATICS – C3 Pure Mathematics

A.M. WEDNESDAY, 23 January 2013 1½ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Sufficient working must be shown to demonstrate the **mathematical** method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers. 1. Use Simpson's Rule with five ordinates to find an approximate value for the integral

$$\int_1^2 \frac{1}{2 + \mathrm{e}^x} \, \mathrm{d}x.$$

Show your working and give your answer correct to three decimal places.

[4]

2. (a) (i) Show, by counter-example, that the statement

$$\cos^3\theta \equiv 1 - \sin^3\theta$$

is false.

(ii) Write down a value of θ which does satisfy the equation

$$\cos^3\theta = 1 - \sin^3\theta.$$
 [3]

(b) Find all values of θ in the range $0^{\circ} \le \theta \le 360^{\circ}$ satisfying

$$4\csc^2\theta = 9 - 8\cot\theta.$$
 [6]

3. (a) Given that

$$x^3 + 5x^4y - 2y^3 + 7 = 0,$$

find an expression for $\frac{dy}{dx}$ in terms of x and y. [4]

- (b) Given that $x = t^3 5$, $y = t^4 + 7t^5$,
 - (i) find an expression for $\frac{dy}{dx}$ in terms of t,
 - (ii) find an expression for $\frac{d^2y}{dx^2}$ in terms of t,

(iii) find the value of
$$\frac{d^2y}{dx^2}$$
 when $x = 3$. [9]

4. (a) On the same diagram, sketch the graphs of $y = \ln x$ and y = 11 - 2x. Deduce the number of roots of the equation

$$ln x + 2x - 11 = 0.$$
[3]

(b) You may assume that the equation

$$\ln x + 2x - 11 = 0$$

has a root α between 4 and 5.

The recurrence relation

$$x_{n+1} = \frac{11 - \ln x_n}{2},$$

with $x_0 = 4.7$, can be used to find α . Find and record the values of x_1 , x_2 , x_3 , x_4 . Write down the value of x_4 correct to five decimal places and prove that this is the value of α correct to five decimal places. [5]

5. (a) Differentiate each of the following with respect to x.

- (i) $\sqrt{5x^2 3x}$
- (ii) $\sin^{-1} 7x$
- (iii) $e^{3x} \ln x$

[7]

[4]

(b) By first writing $\cot x = \frac{\cos x}{\sin x}$, show that $\frac{d}{dx}(\cot x) = -\csc^2 x$. [3]

6. (a) Find

(i)
$$\int \cos\left(\frac{4x+5}{3}\right) dx$$
, (ii) $\int e^{2x+9} dx$, (iii) $\int \frac{3}{(7-2x)^6} dx$. [6]

(b) Express $\int_2^{44} \frac{1}{3x-4} dx$

in the form $\ln k$, where k is an integer whose value is to be found.

- 7. (a) Solve the inequality |3x-4| > 5. [3]
 - (b) (i) Sketch the graph of y = |x|.
 - (ii) The diagram below shows a sketch of the graph of $y = a \mid x + b \mid$, where a and b are constants. The graph meets the x-axis at the point (4, 0) and the y-axis at the point (0, -8).

Find the value of *a* and the value of *b*.

[3]

TURN OVER

8. The function f has domain $[-1, \infty)$ and is defined by

$$f(x) = \ln(4x + 5) - 2.$$

- (a) Find an expression for $f^{-1}(x)$. [4]
- (b) State the domain of f^{-1} . [1]
- **9.** (a) The functions f and g have domains $(-\infty, \infty)$ and $(0, \infty)$ respectively and are defined by

$$f(x) = x^2 - 25,$$

 $g(x) = 2x - 3.$

- (i) Write down the domain of fg.
- (ii) Write down the range of fg.
- (iii) Write down an expression for fg(x).
- (iv) Solve the equation fg(x) = 0. [7]
- (b) The function h is defined by

$$h(x) = \frac{2x+7}{5x-2}.$$

- (i) Show that hh(x) = x.
- (ii) **Hence** write down an expression for $h^{-1}(x)$. [3]