GCE AS/A level

MATHEMATICS - C3
 Pure Mathematics

A.M. WEDNESDAY, 23 January 2013
$1^{1 ⁄ 2}$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Use Simpson's Rule with five ordinates to find an approximate value for the integral

$$
\int_{1}^{2} \frac{1}{2+\mathrm{e}^{x}} \mathrm{~d} x
$$

Show your working and give your answer correct to three decimal places.
2. (a) (i) Show, by counter-example, that the statement

$$
\cos ^{3} \theta \equiv 1-\sin ^{3} \theta
$$

is false.
(ii) Write down a value of θ which does satisfy the equation

$$
\begin{equation*}
\cos ^{3} \theta=1-\sin ^{3} \theta . \tag{3}
\end{equation*}
$$

(b) Find all values of θ in the range $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$ satisfying

$$
\begin{equation*}
4 \operatorname{cosec}^{2} \theta=9-8 \cot \theta . \tag{6}
\end{equation*}
$$

3. (a) Given that

$$
\begin{equation*}
x^{3}+5 x^{4} y-2 y^{3}+7=0 \tag{4}
\end{equation*}
$$

find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(b) Given that $x=t^{3}-5, y=t^{4}+7 t^{5}$,
(i) find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t,
(ii) find an expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ in terms of t,
(iii) find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=3$.
4. (a) On the same diagram, sketch the graphs of $y=\ln x$ and $y=11-2 x$.

Deduce the number of roots of the equation

$$
\begin{equation*}
\ln x+2 x-11=0 \tag{3}
\end{equation*}
$$

(b) You may assume that the equation

$$
\ln x+2 x-11=0
$$

has a root α between 4 and 5 .
The recurrence relation

$$
x_{n+1}=\frac{11-\ln x_{n}}{2},
$$

with $x_{0}=4 \cdot 7$, can be used to find α. Find and record the values of $x_{1}, x_{2}, x_{3}, x_{4}$. Write down the value of x_{4} correct to five decimal places and prove that this is the value of α correct to five decimal places.
5. (a) Differentiate each of the following with respect to x.
(i) $\sqrt{5 x^{2}-3 x}$
(ii) $\sin ^{-1} 7 x$
(iii) $\mathrm{e}^{3 x} \ln x$
(b) By first writing $\cot x=\frac{\cos x}{\sin x}$, show that $\frac{\mathrm{d}}{\mathrm{d} x}(\cot x)=-\operatorname{cosec}^{2} x$.
6. (a) Find
(i) $\int \cos \left(\frac{4 x+5}{3}\right) \mathrm{d} x$,
(ii) $\int \mathrm{e}^{2 x+9} \mathrm{~d} x$,
(iii) $\int \frac{3}{(7-2 x)^{6}} \mathrm{~d} x$.
(b) Express $\int_{2}^{44} \frac{1}{3 x-4} \mathrm{~d} x$
in the form $\ln k$, where k is an integer whose value is to be found.
7. (a) Solve the inequality $|3 x-4|>5$.
(b) (i) Sketch the graph of $y=|x|$.
(ii) The diagram below shows a sketch of the graph of $y=a|x+b|$, where a and b are constants. The graph meets the x-axis at the point $(4,0)$ and the y-axis at the point $(0,-8)$.

Find the value of a and the value of b.
8. The function f has domain $[-1, \infty)$ and is defined by

$$
f(x)=\ln (4 x+5)-2
$$

(a) Find an expression for $f^{-1}(x)$.
(b) State the domain of f^{-1}.
9. (a) The functions f and g have domains $(-\infty, \infty)$ and $(0, \infty)$ respectively and are defined by

$$
\begin{aligned}
& f(x)=x^{2}-25, \\
& g(x)=2 x-3 .
\end{aligned}
$$

(i) Write down the domain of $f g$.
(ii) Write down the range of $f g$.
(iii) Write down an expression for $f g(x)$.
(iv) Solve the equation $f g(x)=0$.
(b) The function h is defined by

$$
h(x)=\frac{2 x+7}{5 x-2} .
$$

(i) Show that $h h(x)=x$.
(ii) Hence write down an expression for $h^{-1}(x)$.

